
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-15, NO. 8, AUGUST 1967 455

sive in computing time. This is, however, something of an

open question as so few structures permit alternative, ana-

lytic solutions beyond first-order perturbation.

This method is therefore proffered as a versatile and auto-

matic procedure for analyzing, with moderate accuracy, this

class of waveguide problems.
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The Green’s Dyadic for Radiation in a

Bounded Simple Moving Medium

Y. J. SETO,

Absfract—The Woolies here show that the wave equation for electro-

magnetic wave propagation in an isotropic and nniforrnly moving medium

is solvable by the separation method in four coordinate systems. Solutions

in the form of complete sets of eigenfunctions are possible for problems

where boundary surfaces are presented. A Green’s dyadic for finite or

semi-infinite domain problems involving sources in the moving medhrm has

been formulated through vector operation on the eigenfunction solutions

of the homogeneous wave equation. The case of electromagnetic waves

excited by a current loop, immersed in a moving medium, and coofmed

by a circular cylindrical waveguide, was examined. The electric and nmg-

netic field intensities in such a wavegnide were compared with those

obtained through a different approach. The Green’s dyadic for electro-

~gnetic waves in an infinite domain moving medium was shown to be

obtainable from tbe finite domain Green’s dyadic through a limiting

process.

INTRODUCTION

T

HE PROBLEM OF electromagnetic wave propaga-

tion in a moving medium has gained a renewed inter-

est in recent years. A number of studies has been re-

ported on the subject involving a bounded or an unbounded
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moving medium. For radiation problems, Lee and Papas*

have derived a Green’s f~ction which is adequate for

sources in an infinite domain moving medium. Compton

and Tai2 also have derived an infinite domain Green’s dyadic

for sources in a moving medium which has a different form

from that obtained by Lee and Papas. In principle, the

infinite domain Green’s function can be used to obtain the

field in a finite domain if one retains the surface integral in

the integral representation of the field. In practice, however,

evaluation of the surface integral is not a simple task. For

most boundary value problems involving sources inside the

boundaries, the boundary conditions are usually either

homogeneous Dirichlet or homogeneous Neumann, and

seldom involve both homogeneous Dirichlet and homo-

geneous Neumann simultaneously on the same boundary

surface. Any inhomogeneous boundary condition requires

a priori knowledge of the surface charge density or surface

current density before the surface integral can be evaluated.

Such knowledge is usually not given in the statements of the

problem.

To avoid such difficulties, a different approach is sug-

gested in this paper. A study to better understand the finite

or semi-infinite domain free-wave solutions is carried out.

1K. S. H. Lee and C. H. Papas, “Electromagnetic radiation in the
presence of simple moving medium,” J. Math. Phys., vol. 5, no. 12,
pp. 1668-1672.1964.

2R. T. Compton, Jr., and C. T. Tai, “Radiation from harmonic
sources in a uniformly moving medium,” IEEE Trans. Antennas and
Propagation, vol. AP-13, pp. 574-577, July 1965.
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The finite or semi-infinite Green’s dyadic is then constructed

from the appropriate free-wave solutions so as to render it

the same homogeneous boundary conditions the free-wave

satisfied. Such homogeneous boundary conditions imposed

upon the Green’s dyadic facilitates the vanishing of the sur-

face integral in the integral representation of the field.

SOLUTION BY SEPARATION METHOD

In the fixed frame of reference, the Maxwell’s equations

and the consthutive relation for an isotropic and moving

medium are

dB
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where V is the velocity of the moving medium, p and e are

the permeability and the permittivity, respectively, of the

medium at rest, C= l/ti&, and Co is the velocity of light in

free space. Here, it is assumed that J and p are the source

current density function and the source charge density func-

tion, respectively, expressed in the fixed frame coordinates.

Assuming harmonic variation of the form e~~’, manipula-

tion of (1) to (6) yields the wave equation for E and H,

respectively:

~X~X E–lc2E= –jup~-l. J, (7)

ZXZXH–k’H =ZXG-l..T. (8)

Two additional equations corresponding to (3) and (4) may

also be written
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and ~. ~–l = =1. ~== ~, with ~ being the idemfactor. In

a source-free region, (7) to (10) reduces to homogeneous

equations of the form:

ZXZXF–kZF=O,

and

(11)

(12)

where F represents E or H. Equation (11) is seen to resemble

a vector Helmholtz equation except that the operator ~

involves an additional term and a multiplying dyadic. It is

well known that the scalar Helmholtz equation is solvable

by separation method in eleven coordinate systems, and

that the vector Hehnholtz equation is separable in only six

coordinate systems. As the Helmholtz equation takes on

more complicated form, it is anticipated that the number of

coordinate systems in which it is separable shall become less.

Despite the fact that (11) has been solved for some problems

mostly involving the rectangular coordinate system and the

circular cylindrical coordinate system, its separability has

not been seriously studied. Such study is desirable since by

determining the coordinate systems in which this equation

is separable, one not only has the knowledge of exactly in

what coordinate system one may solve this equation by a

separation method, but one also may attempt solutions in

the form of eigenfunction when boundaries are present. The

eigenfunction solution will be of great help in constructing

the finite domain or the semi-infiite domain Green’s dyadic.

The first term in (11), after expansion, contains a vector

operation term in the form of (curl curl F). A review of the

separability of a vector Hehnholtz equation shows that the

coordinate systems in which the (curl curl F) term facilitates

separation must be a coordinate system in which one of the

scale factors is unity and that the ratio of the remaining two

scale factors must be independent of the coordinate corre-

sponding to the unity scale factor.3 The six coordinate sys-

tems which meet these requirements are the conical, the

spherical, and the four cylindrical coordinate systems.

The constitutive relation (5) and (6) were obtained through

a proper Lorentz transformation, the velocity V of the ma-

terial medium must be constant in magnitude as well as in

direction. Of the six coordinate systems which permit sepa-

ration of the term (curl curl F), only the four cylindrical

coordinate systems permit simple expression of constant

direction in V. In fact, the most simple expression of V is ob-

tained by orienting the chosen coordinate system such that

the unity scale factor coordinate be parallel or antiparallel

to V. Without losing generality, let this coordinate be de-

noted & and its unit vector denoted aB. V is then simply

expressed as Va3, where V is the magnitude of V. In Car-

tesian coordinate systems, L%may represent X, Y, or Z. In
the remaining three cylindrical coordinate systems, i.e., cir-

8P. M. Morse, and H. Feshback, Method of Theoretical Physics,

vol. II. New York: McGraw-Hill, 1953, ch. 11.

cular, elliptical, and parabolic, & represents the Z coordi-

nate only. Using V= Va3, the expressions for Q and ~ are

then reduced to those obtained by Tai,4

(n’ – 1)/3
a=

(1 – n739CJ a’= Qa3
(13)
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In the application of boundary-value problems, separation

into the form that conveniences the fitting of boundary sur-

faces is most desirable. It is suggested that(11) and (12) be

separated in terms of the two transverse vectors M and N,

F= M+N, (16)

M=~X@a3=– La3XV~q$ (17a)
a

N=~x~Xxa3= – J (V~2@)a3
a

+ : Vl(vux – jinx), (17b)

where # and x are scalar functions to be determined. The

subscript 1 indicates the components of operator or vector

which are perpendicular to &8, whereas [] indicates parallel

to .$3.The vector M is seen to be entirely tangential to the

surface &= constant. The vector N, in general, has a com-

ponent tangential to the &= constant surface and a compo-

nent normal to it, thus tangential to the .$1=constant and

i2 = constant surfaces.
By invoking the identity ~. (~X A) = O, where A is any

vector function and ~=&. ~, it can be shown that both M

and N satisfy (1 2). Substitution of (16) and (17), respectively,

into (11) yields the scalar differential equation:

(

j2wLl
V12 + : VP + — a3. Vu —

)
s+kza j= (), (18)

a a a

where j_ represents either d or x. It is evident that if (18) can

be solved to the satisfaction of the appropriate boundary

conditions, solution for E can be obtained through (16) and

(17). Equation (18) is solved easily by separation of variables

method, which demands

VJ_2j = – Km,w’j, (19)

4C. T. Tai, “The dyadic Green’s function for a moving isotropic
mediumfl IEEE Trans. Antennas and Propagation (Communications),

VO1.AP-13, pp. 322-323, March 1965.
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and

a8” vll~ = i jknnf, (20)

where K~n and k~m are the separation constant, they are

related by the dispersion relation

2&! CAP
— – k.’ = o. (21)K..2 + L kmn’ t ~ h. + ~

a

The subscript m, n is required to signify that either K~~ or

i& or both are eigenvalues depending upon the manner in

which the boundaries set up in the problem. In view of (19)

and (20), the solution for ~ should take the form of eigen-

functions

f = z jl~.(&l, .5, KmMm&3, km). (22)
m,n

If the boundaries are parallel to the &= constant surface,

~tlmn, then XII&3) or 41143) are sets Of eigenfunctions, kmn
are the eigenvalues running on one index, say m, and at

least a component of K~n obtained from the dispersion rela-

tion (21) will describe the dispersion relation for propaga-

tion in the (.$1, &J space. The remaining component of Kit.

will be another eigenvalue running on the index n, with

o~m.(.%, t,) and XLJ&, M d-rib@ propagation in the

(h, $’2) space. Conversely, if the boundary surface is perpen-
dicular to the it= constant surfaces, @Jfl, h) and xIIfi.(t3)

will consist of sets of eigenfunctions with K~~ describing the
eigenvalues. @IIm&3) and x IImn(t3) describe the propagation in
the ~3 direction with ~. being the parameter describing the

dispersion relation. Of course, if the boundary is a self-

enclosed one, the two sets of indices, m and n, will degener-

ate into three sets, m, n, and 1.

The solution~ from (22), therefore@ and x, is complete if
~1~ and~ll~m as obtained from (19) and (20) each constitutes

a complete set when sum on all indices; consequently, M

and N as well as F or E and H, constructed from the com-

plete set of@ and X, must be complete. Furthermore, it can
be shown that for a physically realizable problem, the func-

tional forms of o~mn, XLmn, Ollmn, and XIL. = so chosen as to

satisfy the boundary conditions for E and H, the solutions

of E and H constructed from 4 and x must be unique.

INHOMOGENEOUSEQUATION AND THE GREEN’S DYADIC

When sources are presented in the bounded region, (7)

and (8) can be represented by a symbolic equation

~X~XF–k2F= J&), (23a)

where

J,(r) = – jcq.i~-’ J(r), (23b)

if F represents E, and

J8(r) = Z X ii-’ ../(r), (23c)

if F represents H.

The integral representation of F in (23a) is sought,

F= sJ.(ro) . G(r \ rO)dvO, (24)
Vo

where the kernel ~(r I rJ is the Green’s dyadic which satisfies

ZXZX@r\rOl –k2@(r\r0)

— — 47r7ti(r – rO), (25)

where the vector operator ~ is on the observer coordinate I-.

It is also required that G(rl ro) must satisfy

h“ X ZO* X G(r I rO) – k2G(r I rO)

= – 47r78(r – ro), (26)

where the subscript O on the vector operator indicates that

the operation is on source coordinates and the asterisk de-

notes complex conjugate, thus

~ = Z-1. (V –j@Q), (27a)

z!)’ = a-’. (v, + jm). (27b)

The requirement that the complex conjugate of the vector

operator be used while interchange the observer and source

coordinates is the best direct consequence of the reciprocity

th?orem for the Green’s dyadic.b Theja term in (27) actually

comes from time operator ~/13t operating on the harmonic

factor ej”’. The reciprocity of the Green’s dyadic for an equa-

tion involving both spatial and temporal operations implies

that

G(r, t I rO, to) = G(rO, –to I r, ‘O. (28)

The need to use the complex conjugate vector operator ~0

in (26) is therefore evidenced.

To obtain (24), one rewrites (23a) in source coordinates

and manipulates it with (26) to obtain

.Z,* x Z, x G – (h x G x F(d). ~lAo. (29)

The second volume integral to the right of the equality in

(29) can be changed into a surface integral by the identity

A.Z*X~*XB–(zXzXA).~

. v.[Ax~* xB–(~XA)X B]. (30)

Thus

4wJ -

If the surface integral in (31) vanishes, then (24) will result.

Since the boundary condition for F is usually homogeneous,

regardless of whether F satisfies a homogeneous Dirichlet

boundary condition or a homogeneous Neumann’s bound-

ary condition, the surface integral in (31) will vanish if it is

demanded that the Green’s dyadic satisfies the same bound-

ary condition that F satisfies. Such condition imposed upon

5C. T. Tai, “Huygen’s principle in a moving isotropic, homogeneous
and linear medhnnfl Appl. Optics, vol. 4, pp. 1347–1349, October 1965.
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the Green’s dyadic can easily be fulfilled if the Green’s

dyadic is constructed from the solution of F for the homo-

geneous equation as given in (16) and (17), providing that

F so obtained satisfies the appropriate boundary condition.

In view of the preceding arguments and the fact that ~(r rJ

must satisfy both (25) and (26), it is obvious that ~(r ro)

should take the form

1
+— VL (a3” Vllxmz(r) +.jaQxmn(r)

3A~n 1[GX 4k*(r0)a3 + a3Vq’xmn*(rO)

+ V~O(a3 ~V~lox~~*(ro) + jdlx~~*(ro))] (32)

where @n.(r) and x~~(r) must satisfy (18) or (19) and (20)

simultaneously, as well as satisfying the boundary condi-

tions for F. @~fi*(rJ and xmn”(ro) are the complex conjugate

of @mJr) and xmn(r), respectively, and are expressed in the

source coordinates. The constants l/A~n can be evaluated

by substituting (32) into (25), which yields

[F(r ] ro)] = - 47rZ.5(r - ro). (33)

Although ~X@a3 and ~X~X xa3 are not mutually

perpendicular in space, but their components a3XVl@,

a3V~ 2X, and V~(as. VIIX—ju Qx) are three mutually orthog-

onal vectors. Multiply, in turn, a3 X V~@*, a sV~2x*, and

V~(a3. VllX*+jW QX*) scalarly from the left into both sides of

the equality sign in (33). Use the mutually orthogonal vector

properties, the resulting equation can be written into three

equations

x> Z~n(a, X V~q5p,*(r))
mn cPA1

. (a3 X Vdk(r)) (as X v~f$mn(r))

– 41r—— ———(a3 X V~&Q*(r))b(r – rO),
o!

(34)

Taking advantage of (19) and (20), (34) can be integrated

over the entire observer space. Utilizing the orthogonality

properties of the eigenfunction &n and x~n, and the singular

property of the delta function, one obtains

I K~.2 I ZJV~n+
lA~~ = J (35a)

a’41r

I Km’ I ZJVm.X
i~,mn=— ? (35b)

a247r

3A~a _ (km + WQ)2Zm.K~n’NmfiX
— —) (3.5C)

a447r

where N~n~ and NmnX are the normalization factor for ~n.

and x~n, respectively. The complete Green’s fimction for

finite or semi-infinite domain is therefore

4Ta2
G(r / riJ = ~

m,. Knm2ZnnNmn~

(V~dh(r) X a3) (V@,nn*(r) X a3)

-g K:;, V~2x~. (r) a3a3V~02Xmn* (rO)
mn nun mn

47ra2
+x

Kmn2(knm+ c&J)2Z..Nm.Xm ,n

V~ (Vll. a3xmn(r) – jcdflxmn) VIO

(V110.a3X~n*(r) + j&xmn*(ro)). (36)

Symbolically, (36) may be written as

s. i ?n,?l
G(r ] ro) = ~ ~ (Li) (Loi)*&~ig~,ti(r / ro), (37)

where (Lt) and (LO~)* are the vector operators in (36); S~mi

are the constants in (36) involving Nwn’s, K’s, k’s, and a.

g~ni is a scalar Green’s function such that

gmni = dkn(r)@mn*(rO),

if i runs on the term involving the operators (Li) = (– a8 X Vl)

and (LOi)* = (–a3X V~O). And

gnl.i = x~n (r) Xw. (rO),

if i runs on the term involving the operators (L~)

= ajV~2, (Loi)* = a3V~02, or (Li) = V~(as. VII —jw Q) and (Loi)

=V~O(aj.VllO+jaL?).

It is obvious that this scalar Green’s function satisfies the

scalar Green’s equation

( 1 2’iwQ
V12 + — VI!2 – —a3. vll —

)

% + k2a ~mni

a a c?

= O(r – ro). (38)

The symbolical form of G(rl ro) as given in (37) would be of

convenience for the discussion of retrieving the infinite

domain Green’s function to be presented after the next
a c’ a section.



460 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, AUGUST 1967

EXCITATION IN A CIRCULAR CYLINDRICAL WAVEGUIDE

As an example, the case of a circular cylindrical waveguide

with perfectly conducting wall and filled with a moving di-

electric medium (P, c) having a velocity V along the longi-

tudinal axis of the guide is examined here. The guide is

assumed to have a radius a and is oriented with its longi-

tudinal axis along z axis so that V= Vaz. The wave is as-

sumed to be excited by an infinitesimally thin current loop

10e~”~located at the radius r= a/2 and the plane z= O, as

shown in Fig. 1.

The source current density is expressed as

Id(r – a/2)6(,2)
J8=—

27rT
e3~tao. (39)

One may start with (7) for the electric field intensity E; using

the source function for E as given by (23b)

(1,6(T –
J. = – jt.q.ma~

a/2) 8(z)

)27rr “
(40)

The appropriate free-wave solutions of@ and x that satisfy

(18), (19), and (20), and also satisfy boundary conditions at

the wall can be written immediately

&. = Jn(Kmn@r)efn@e*n~eei~t, (41a)

Xpq = JQ(KDqxr)eiQ@eikpqxze iwt (41b)

where m, n, p, and q are all integers. (K&$a) is the mth zero

of the first derivative of the nth order Bessel function

(8/&)JJK%), (KD#a) is the pth zero of the qth order Bessel

function J,(Kpqr) okfin+ and kp,x are the propagations con-

stants for the r)~n wave mode and x~n wave mode, respec-

tively. They are evaluated from the dispersion relations (21);

each yields four roots

k~n$ = + [d f v’lc’a’ – Km@, (42a)

kmnx = ~ [&? t <ka’ – K.n~]. (42b)

The signs outside the square bracket are chosen such that

they represent wave traveling away from z= O plane.

Equation (42) is essentially that obtained by Du and

Compton,b except that Du and Compton only consider the

two roots with minus sign outside the bracket. It is of inter-

est to note that (41a) yields solutions corresponding to the
TE mode waves in Collier and Tai’s analysisT while (41b)

corresponds to their TM mode waves. The complete free-

wave solution for E is therefore

E = ~ A~n { V1 (Jn(K~n%) e~no)x a ~} e~km.+z
mn

+ ~ ~p,~ x ~ x [JPQ(K2qxr)e’Q’e~’~~xz] a,, (43)

P3!l

6 J, L. Du and R. T. Compton, Jr., “Cutoff phenomena for guided
waves in moving mediaj” IEEE Trans. Microwave Theory and Tech-
niques, vol. MTT-14, pp. 358-363, August 1966.

7 J. R. Collier and C. T. Tai, “Guided waves in moving media,”
IEEE Trans. Microwave Theory and Techniques, vol. MTT-13, pp.
441-445, July 1965.

Fig. 1. Cylindrical waveguide with loop current source.

where A~~ and Bnn are arbitrary constants. The magnetic

field strength can be obtained from E through the modified

Maxwell’s equation

ZXE=–jW@. (44)

The Green’s function for E in this waveguide is constructed

from onn and X9, according to (36)

4d
+Z

Knu,2(knz + W@ 2Zm.NmnXm,n

V~(Vll. a3xmn(r) – jdlxmn) V~O

(V~l. a~x~n*(r) -t- joQXmn*(rO)). (45)

The field excited by the current loop is found by substituting

(45) and (40) into (24) and perform the integral. The integra-

tion is not difficult, if one observes that the source function

is a transverse function, only the transverse term of the

Green’s function is needed. Furthermore, J(r) does not

depend on 0 by reason of orthogonality of the eigenfunc-

tions, there shall be no contribution from n< 1 terms in the

Green’s function, one obtains:

jq.uYIiI KOI
E(r) = a~ — AoIJo’

()
~ Jo’ (KOlr) e~tol”, (46a)

8=2
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where (KOla) is the first zero of JO’, the prime on the Bessel distance from the source will be attempted through the
functions denotes the first derivative of the Bessel function method of steepest descent.

with respect to (IG,r). Using (45) Assuming that interest is in the accuracy of the solution

—aoIo Kol –

()

only to the order of ri’, the zero order Hankel function may

H= — A OIJO’ ~ L x (Jo’(KO1r)e%i”)a@, (~6b) be expanded into its asymptotic form. Retaining
87r2 first term, (49) then becomes

where &i(7r/4)

J

-tm ~Ce– jkzte–jkrL ~

4TCJ
Ii =

AOI = –
dk.

(47a) 2 -Q (7rKrL’) 1/’
KO12ZOJVOI+’‘

At this point, it would seem more convenient to change the

No, =$. (47b) coordinate system from that of circular cylindrical coordi-

nates to that of spherical coordinates (R, @, a); where

only the

(50)

In view of (45), it is seen that the current loop excites a TEOI r~’ = R sin d,

mode wave in the circular cylindrical waveguide. z’ = R COS +.

THE INFINITE DOMAIN GREEN’S DYADIC

It is interesting to note that the transition of a finite or

semi-infinite domain Green’s dyadic may be obtained

through a limiting process. No attempt will be made here to

derive the infinite domain Green’s dyadic into its final form,

The main purpose here is to show that such transition is

possible.

As an example, take the Green’s dyadic of the circular

cylindrical waveguide given in (45). As the wall recedes to

infinity, i.e., a+ co, the summation on m goes over to an

integral. Written in the symbolic form of (38), the trans-

formed infinite domain Green’s dyadic, G.(r] ro), is

G.(r \ ro) = ~ ~ (L’) (L~*)
s

o ( )gn’dk. (48)‘Si ~

an

In (48), the order of integration and differentiation opera-

tions has been interchanged and the subscript m has been

dropped. Evidently, the Green’s dyadic for infinite domain

can be obtained through a set of auxiliary scalar functions,

1, as represented by the integral in (48). In view of the fact

Under the new coordinate system, (50) becomes

se–i(7r/4) +m

I’(R) = ~

Si

._Q (7fKR sin ~) ‘/2

.~–iR (K sin 4H COB+)d]c. (51)

It is recalled that K and k are related through the dispersion

relations (21). Define a new parameter

T2=K2+~2 (52)

T is therefore the total propagation factor. Now for the sake

of convenience, instead of k, a new integration parameter,

T, may be employed, such as

K= Tsin T, (53a)

lc=Tcosr. (53b)

The parameter, has the same significance as the angle which

measures the wave normal if T k a constant; however, in

the present case, T is not a constant. In fact, combining (21),

(52), and (53) yields an expression for Tin terms of ~.

+@: Cos 7 i- d Ww
kz(cosz 7 + a sin2 T) – ~ sin2 r

a
Tlt.A=

(54)

sin2 r + l/c2 Cosz r

that g.i involves ejno and the Bessel functions, after using

the addition theorem to perform the summation on n, P may

be written

s~i=l ‘m.
S’HO(2J(Kr~’)e-j~’’dk,

7 _=
(49)

where

and HOt2J(Kr~’) is the Hankel function of the second kind of

the zero order. It should be noted that the new coordinate

system has its origin at the source point. This choice of a

new origin may require subsequent transformation back to

the original origin.

An asymptotic solution which is valid for waves at large

where the subscript 1 to 4 on T represents the choice of plus

or minus sign in (54). For simplicity, the subscripts on T are

dropped. The integral for F becomes

1 s Si

Ii =

~j4R sin d) 1/2 c [~T(~) sin ~]’i’ ‘-Ru(’)dr’ ’55)

where

u(r) = jT(~) COS(T – ~). (56)

Examination of the exponent shows that the real part of u(,)

approaches + w as k approaches f cc. The saddle point of

the integration is determined by

du
= o,z (57)
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which yields

1

()
~ T(T) = tan (~0 – +).

T(m) G?r
(58)

,=70

The contour of integration, C, is then chosen such that the

path goes through the saddle point, To, and that the imagi-

nary part of u is constant, Following the method of steepest

descent, the solution for (55) is therefore

6“(70) ~–Ru (TO)
Ii =

% (To) R (sin ~) 1/2

where

(59)

n(To) = @sinT[(HcOs(’-o)
1}

1/2
–2~sin(, –@) . (60)

,-=,~

The electric field intensity E in infinite domain may, there-

fore, be obtained from

H
~~(To) ~-,Ru (,0)

E=~ (L’) (L,”’) —
%Z(TO) R(sin O) l/z1MU(61)

i Vfi

providing that all parameters, including the differential

operators, are properly transformed to the correct observer

and source coordinates in the spherical coordinate system.

The Green’s dyadic as shown in (61) is in a form different

from those obtained either by Lee and Papas or by Compton

and Tai. Nevertheless, the results should be equivalent.
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Coupler-Type Bend for Pillbox Antennas

VINCENT MAZZOLA, MEMBER, IEEE, AND JOEL E. BECKER, SENIOR MEMBER, IEEE

Absfract—A new type of 180° H-plane bend has been developed for

nse in double-layer pillbox antennas. This bend, called a coupler-type

bend, permits complete coupling between two pillbox layers with a mioi-

mum of reflection, cross-polarization, and defocusing. It can be used with

short focus antennas where large feed angles are involved. Tbe coupler-

type bend utilizes a metal plate between the pillbox layers; the plate

coutains a pattern of holes which achieves the desired coupling.

Analytical and experimental programs have been implemented to

determine the optimum hole size and distribution. Simulation techniques

in rectangular waveguide were employed for convenience in measurements.

The bend design was measured to have a reflection less than 2 dB SWR

over a ten percent frequeucy band; this is computed to contribute less

than 0.2 dB SWR to the reflection seen by the feed-horn of a double-layer

pillbox. The bend introduces less than – 22 dB of cross-polarization in

the antenna radiation. Measurements of a pillbox model incorporating

the bend design have verified tbe predicted performance of tbe coupler-

type beud.

I. INTRODUCTION

o

NE OF THE common antennas for generating a fan

beam is the pillbox or “cheese” antenna [I], [2].

For the single-layer pillbox antenna, the feed is

usually located in the radiating aperture, producing several
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was between the Western Electric Company and the U. S. Army.

The authors are with Wheeler Lab~ratories, Inc., Smithtown, N. Y.
11787

undesirable effects. Firstj a portion of the wave in the aper-

ture is received by the feed and appears as a reflection. Sec-

ond, this blocking causes a hole in the aperture excitation

giving rise to degradation of the pattern in the form of

higher sidelobes.

In order to eliminate these effects, double-layer pillboxes

have been developed [2]. In the double-layer arrangement,
the feed is located in one layer with the second layer contain-

ing the aperture. In such designs, the principal problem is to

transfer the wave efficiently from one layer to the other. In

the past, this has been accomplished with a bend consisting

of a large slot in the common wall between the layers, bor-

dering along the entire length of the parabolic reflector. In

general, this configuration has been successful only over a
narrow bend of frequencies and for long focal-length pill-

boxes, in which the bend is required to operate only over a

narrow range of angles. In addition, there is frequently the

problem of appreciable antenna response to cross-polariza-

tion. All of these defects can be traced to the performance of

the coupling device.

A new double-layer pillbox has been developed at Wheeler

Laboratories which operates over a substantially larger band

of frequencies and with a larger feed angle (shorter focal

length) than possible in the past. Also, cross-polarization is

suppressed to a tolerable level. This performance has been

achieved by an improved coupling device between the

layers; the device is referred to as a coupler-type bend [3].


