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sive in computing time. This is, however, something of an
open question as so few structures permit alternative, ana-
Iytic solutions beyond first-order perturbation.

This method is therefore proffered as a versatile and auto-
matic procedure for analyzing, with moderate accuracy, this
class of waveguide problems.
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The Green’s Dyadic for Radiation in a
Bounded Simple Moving Medium

Y. J. SETO, MEMBER, 1EEE

Abstract—The studies here show that the wave equation for electro-
magnetic wave propagation in an isotropic and uniformly moving medium
is solvable by the separation method in four coordinate systems. Solutions
in the form of complete sets of eigenfunctions are possible for problems
where boundary surfaces are presented. A Green’s dyadic for finite or
semi-infinite domain problems involving sources in the moving medium has
been formulated through vector operation on the eigenfunction solutions
of the homogeneous wave equation. The case of electromagnetic waves
excited by a current loop, immersed in a moving medium, and confined
by a circular cylindrical waveguide, was examined. The electric and mag-
netic field intensities in such a waveguide were compared with those
obtained through a different approach. The Green’s dyadic for electro-
magnetic waves in an infinite domain moving medium was shown to be
obtainable from the finite domain Green’s dyadic through a limiting
process.

INTRODUCTION

HE PROBLEM OF electromagnetic wave propaga-
Ttion in a moving medium has gained a renewed inter-
est in recent years. A number of studies has been re-
ported on the subject involving a bounded or an unbounded

Manuscript received December 12, 1966; revised April 17, 1967.
This work was supported in part by the National Science Foundation
under Grant GK-882. Part of this work was carried out during this
author’s tenure at the University of Houston, Houston, Tex.

The author is with the Dept. of Elec. Engrg., Tulane University,
New Orleans, La. 70118

moving medium. For radiation problems, Lee and Papas!
have derived a Green’s function which is adequate for
sources in an infinite domain moving medium. Compton
and Tai? also have derived an infinite domain Green’s dyadic
for sources in a moving medium which has a different form
from that obtained by Lee and Papas. In principle, the
infinite domain Green’s function can be used to obtain the
field in a finite domain if one retains the surface integral in
the integral representation of the field. In practice, however,
evaluation of the surface integral is not a simple task. For
most boundary value problems involving sources inside the
boundaries, the boundary conditions are usually either
homogeneous Dirichlet or homogeneous Neumann, and
seldom involve both homogeneous Dirichlet and homo-
geneous Neumann simultaneously on the same boundary
surface. Any inhomogeneous boundary condition requires
a priori knowledge of the surface charge density or surface
current density before the surface integral can be evaluated.
Such knowledge is usually not given in the statements of the
problem.

To avoid such difficulties, a different approach is sug-
gested in this paper. A study to better understand the finite
or semi-infinite domain free-wave solutions is carried out.

1 K. S. H. Lee and C. H. Papas, “Electromagnetic radiation in the
presence of simple moving medium,” J. Math. Phys., vol. 5, no. 12,
pp. 1668-1672, 1964.

2R, T. Compton, Jr., and C. T. Tai, *“Radiation from harmonic

sources in a uniformly moving medium,” IEEE Trans. Antennas and
Propagation, vol. AP-13, pp. 574-5717, July 1965.



456

The finite or semi-infinite Green’s dyadic is then constructed
from the appropriate free-wave solutions so as to render it
the same homogeneous boundary conditions the free-wave
satisfied. Such homogeneous boundary conditions imposed
upon the Green’s dyadic facilitates the vanishing of the sur-
face integral in the integral representation of the field.

SOLUTION BY SEPARATION METHOD

In the fixed frame of reference, the Maxwell’s equations
and the constitutive relation for an isotropic and moving
medium are
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where V is the velocity of the moving medium, p and € are
the permeability and the permittivity, respectively, of the
medium at rest, C=1/+/ue, and C, is the velocity of light in
free space. Here, it is assumed that J and p are the source
current density function and the source charge density func-
tion, respectively, expressed in the fixed frame coordinates.
Assuming harmonic variation of the form e manipula-
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and a-al=at-a=1, with I being the idemfactor. In
a source-free region, (7) to (10) reduces to homogeneous
equations of the form:

LXLXF—kF =0, (11)

and

a-L-(a-F) =0, (12)

where F represents E or H. Equation (11) is seen to resemble
a vector Helmholtz equation except that the operator L
involves an additional term and a multiplying dyadic. It is
well known that the scalar Helmholtz equation is solvable
by separation method in eleven coordinate systems, and
that the vector Helmholtz equation is separable in only six
coordinate systems. As the Helmholtz equation takes on
more complicated form, it is anticipated that the number of
coordinate systems in which it is separable shall become less.
Despite the fact that (11) has been solved for some problems
mostly involving the rectangular coordinate system and the
circular cylindrical coordinate system, its separability has
not been seriously studied. Such study is desirable since by
determining the coordinate systems in which this equation
is separable, one not only has the knowledge of exactly in
what coordinate system one may solve this equation by a
separation method, but one also may attempt solutions in
the form of eigenfunction when boundaries are present. The
eigenfunction solution will be of great help in constructing
the finite domain or the semi-infinite domain Green’s dyadic.

The first term in (11), after expansion, contains a vector
operation term in the form of (curl curl F). A review of the
separability of a vector Helmholtz equation shows that the
coordinate systems in which the (curl curl F) term facilitates
separation must be a coordinate system in which one of the
scale factors is unity and that the ratio of the remaining two
scale factors must be independent of the coordinate corre-
sponding to the unity scale factor.® The six coordinate sys-
tems which meet these requirements are the conical, the
spherical, and the four cylindrical coordinate systems.

The constitutive relation (5) and (6) were obtained through
a proper Lorentz transformation, the velocity ¥ of the ma-
terial medium must be constant in magnitude as well as in
direction. Of the six coordinate systems which permit sepa-
ration of the term (curl curl F), only the four cylindrical
coordinate systems permit simple expression of constant
direction in V. In fact, the most simple expression of ¥ is ob-
tained by orienting the chosen coordinate system such that
the unity scale factor coordinate be parallel or antiparallel
to V. Without losing generality, let this coordinate be de-
noted &;, and its unit vector denoted a;. V is then simply
expressed as Vas, where V is the magnitude of V. In Car-
tesian coordinate systems, £; may represent X, Y, or Z. In
the remaining three cylindrical coordinate systems, i.e., cir-

3 P. M. Morse, and H. Feshback, Method of Theoretical Physics,
vol. II. New York: McGraw-Hill, 1953, ch. 11.
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cular, elliptical, and parabolic, &; represents the Z coordi-
nate only. Using V= Vas, the expressions for © and & are
then reduced to those obtained by Tai,*

n?—1
= ‘—(_‘—*)"6‘ as = Qag, (13)
(1 = n239)C

a 0 0
a={0 « 0], (14)

0 0 1

where
pe \1/2 v 1 — B2

= —— s = —, - —_— . 15
K <M0€0> d Co “ 1 — n2g? a5)

In the application of boundary-value problems, separation
into the form that conveniences the fitting of boundary sur-
faces is most desirable. It is suggested that (11) and (12) be
separated in terms of the two transverse vectors M and N,

F =M+ N, (16)
_ 1
M=LXg¢a; = — —az X Vid, (17a)
(44
- - 1
N=LXLXxas=——(V%p)as
o
1 )
+ — Vu(Vix — jox), (17b)
o

where ¢ and x are scalar functions to be determined. The
subscript L indicates the components of operator or vector
which are perpendicular to &;, whereas || indicates parallel
to &;. The vector M is seen to be entirely tangential to the
surface £3=constant. The vector N, in general, has a com~
ponent tangential to the £;=constant surface and a compo-
nent normal to it, thus tangential to the & =constant and
£,= constant surfaces.

By invoking the identity M-(MX A)=0, where A is any
vector function and M=g- L, it can be shown that both M
and N satisfy (12). Substitution of (16) and (17), respectively,
into (11) yields the scalar differential equation:

F282 Q2

aa.V“ —
a [+

<w2 + L vz + + Ic2a) f=0, (18)
44

where f represents either ¢ or x. It is evident that if (18) can

be solved to the satisfaction of the appropriate boundary

conditions, solution for E can be obtained through (16) and

(17). Equation (18) is solved easily by separation of variables

method, which demands

V_sz = Km,n2f, (19)

4 C. T. Tai, “The dyadic Green’s function for a moving isotropic
medium,” IEEE Trans. Antennas and Propagation (Communications),
vol. AP-13, pp. 322-323, March 1965.
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and

where K., and k.. are the separation constant, they are
related by the dispersion relation

202

w2

— ka? =

1 2wQ
Kmn2 + '_km'n,2 *— kmn +
o

(% ¢4

21)

The subscript m, n is required to signify that either K., or
Ky Or both are eigenvalues depending upon the manner in
which the boundaries set up in the problem. In view of (19)
and (20), the solution for f should take the form of eigen-
functions

f = ZfJ_mn(El, f?, Kmn)f”mn<£3; kmn)- (22)
If the boundaries are parallel to the f;=constant surface,
fi,..» then xu,.(£3) or ¢, (&) are sets of eigenfunctions, K
are the eigenvalues running on one index, say m, and at
least a component of K., obtained from the dispersion rela-
tion (21) will describe the dispersion relation for propaga-
tion in the (£, &) space. The remaining component of K.
will be another eigenvalue running on the index n, with
61, (&, &) and xu,.(f1, £) describing propagation in the
(&1, &) space. Conversely, if the boundary surface is perpen-
dicular to the £;=constant surfaces, ¢, (£, £2) and x,,.(¢2)
will consist of sets of eigenfunctions with K., describing the
eigenvalues. ¢1,,(£3) and x1,,,(£s) describe the propagation in
the £; direction with k.., being the parameter describing the
dispersion relation. Of course, .if the boundary is a self-
enclosed one, the two sets of indices, m and », will degener-
ate into three sets, m, n, and 1.

The solution f from (22), therefore ¢ and ¥, is complete if
fim and fi,, as obtained from (19) and (20) each constitutes
a complete set when sum on all indices; consequently, M
and N as well as F or E and H, constructed from the com-
plete set of ¢ and x, must be complete. Furthermore, it can
be shown that for a physically realizable problem, the func-
tional forms of ¢, X1,,.5 D A0 Xy, are s0 chosen as to
satisfy the boundary conditions for E and H, the solutions
of E and H constructed from ¢ and x must be unique.

INHOMOGENEOUS EQUATION AND THE GREEN’S DYADIC

When sources are presented in the bounded region, (7)
and (8) can be represented by a symbolic equation

LXLXF— kF = J(r), (23a)
where
Jo(2) = — jouar™- J(r),

if F represents E, and

Ji() = L X @ J(r),

(23b)

(23¢)

if F represents H.
The integral representation of F in (23a) is sought,

F =f ]s(ro)-é(r] r0)dvo, (24)
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where the kernel G(r| ro) is the Green’s dyadic which satisfies
LXLXG(r|ro] —kG(z] o)
= — 47I5(r — ro), (25)

where the vector operator L is on the observer coordinate r.
It is also required that G(r] ro) must satisfy

L¢* X Lo* X é(f‘ ro) — kzé(t[ ro)

= — 47I8(r — ro), (26)

where the subscript O on the vector operator indicates that
the operation is on source coordinates and the asterisk de-
notes complex conjugate, thus

L= ot (V — jwQ),
_L{)* = —_1'(V0 +]w9)

(27a)
(27h)

The requirement that the complex conjugate of the vector
operator be used while interchange the observer and source
coordinates is the best direct consequence of the reciprocity
theorem for the Green’s dyadic.® The jw term in (27) actually
comes from time operator 9/d¢ operating on the harmonic
factor e#t. The reciprocity of the Green’s dyadic for an equa-
tion involving both spatial and temporal operations implies
that

Gz, t] ro, to) = G(ro, —to| 7, —1). (28)

The need to use the complex conjugate vector operator Lo
in (26) is therefore evidenced.

To obtain (24), one rewrites (23a) in source coordinates
and manipulates it with (26) to obtain

1 = — 1
F(I‘) = ;T‘ﬁofs(l‘o) G(l‘ | I‘o)dl)o -+ ‘Ej‘vo [F(I‘o)

L X Ly X G — (Lo X Ly X F(ro))-Gldvo.  (29)

The second volume integral to the right of the equality in
(29) can be changed into a surface integral by the identity
AL*XIL*XB—(LXLXA)-B

=V-[AXI*XB—(LXA) XB] (30
Thus

1 - =
F(I‘) = —f Js'Gd’Do
2 VA

1 - — - —
+4—f [FXL*XG— (Li X FX &)]-dS.. (31)
T

If the surface integral in (31) vanishes, then (24) will result.
Since the boundary condition for F is usually homogeneous,
regardless of whether F satisfies a homogeneous Dirichlet
boundary condition or a homogeneous Neumann’s bound-
ary condition, the surface integral in (31) will vanish if it is
demanded that the Green’s dyadic satisfies the same bound-
ary condition that F satisfies. Such condition imposed upon

s C, T. Tai, “Huygen’s principle in a moving isotropic, homogeneous
and linear medium,” Appl. Optics, vol. 4, pp. 1347-1349, October 1965.
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the Green’s dyadic can easily be fulfilled if the Green’s
dyadic is constructed from the solution of F for the homo-
geneous equation as given in (16) and (17), providing that
F so obtained satisfies the appropriate boundary condition.
In view of the preceding arguments and the fact that G(z| r,)
must satisfy both (25) and (26), it is obvious that G(zr|ro)
should take the form

G(r|ro) = Z[

m,n

_ 1
L X ¢(r)as + —

2 mn

as;vVixx(r)

10mn

+

Vi@ Vixma(r) +50Qxmn(r) ]
3Ldmn
[EO X ¢mn*<r0)a3 _l_ 33Vl02an*(1'0)
+ Vlo(a3 * VIIOan*(I‘o) + ]wQX"m*<r0))] (32)

where ¢,.,(r) and xm.(r) must satisfy (18) or (19) and (20)
simultaneously, as well as satisfying the boundary condi-
tions for F. ¢m.*(re) and xm.*(ro) are the complex conjugate
of @ma(r) and xm.(z), Tespectively, and are expressed in the
source coordinates. The constants 1/A,., can be evaluated
by substituting (32) into (25), which yields
Enn?  20Qkn, w22
+

(o = — T hat)

mon o a o

[6(1‘, ro)] = — 4al5(r — r). (33)

Although LXg¢a; and LXLXxa; are not mutually
perpendicular in space, but their components a;XV.ig,
asVi?x, and Vi(as Vjx—jwQx) are three mutually orthog-
onal vectors. Multiply, in turn, a;XVi¢*, aVi2x* and
Vi(as: Vix*+jwQx*) scalarly from the left into both sides of
the equality sign in (33). Use the mutually orthogonal vector
properties, the resulting equation can be written into three
equations
1
D

mn & 1

Zmn(as X Vld’pq*(r))
'(a3 X Vl(t‘mn(t))(ab‘ X V_L(,d)mn(l‘))

—4r
= <a3 X Vl¢pq*(r))5(r - 1'0)~
«

P

mn Q"3

Zmn(VJ-2er* (f)a;;)

) (Vlzxmn(r)a3) (V-L02an*(1'0)a3)

T
Viix*(r)as(r — ro), (34)

1

2 —

mn & A3

aan(r) . ax* .
v ( —— — jQxmn(r) ) V1, <— + JoQxm*
0z dz

_47"75 X rs .
= Vi 3 + 70Qx,s 9,

a2

aX*fs(l')

Zmn V1 < + ngxrs* (t)>

where
k
— K — _mn +

64 24 [£4

2wk ran

Lo =
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Taking advantage of (19) and (20), (34) can be integrated
over the entire observer space. Utilizing the orthogonality
properties of the eigenfunction ¢, and x., and the singular
property of the delta function, one obtains

| Kn?| ZoaNo?

Amn 35a,
' o ’ (352)
| Ko | ZonnN X

QAmn = — K (35b)

oA
km + OJQ 2ZmnKmn2Nmnx

3Amn = ( ) ’ (350)

a4

where N,.,* and N,.* are the normalization factor for ¢,.,
and xm., respectively. The complete Green’s function for
finite or semi-infinite domain is therefore

4ra?

Glelro) = ; Kon?ZmN

(Vl¢7nn(1') X a3) (Vlo¢mn*(r) X as)

4ol
-2

m,n Kmn4ZmnNmnx

4wa?
+ E Kmnz(kmn + wQ)ZZmnNmnx

V12X () @383 VL 2xmn™ (20)

Vi(Vi-asxmn(t) — JeQxmn) Vi,

(VHO N a3an* (1‘) + ijan*(r())) . (36)

Symbolically, (36) may be written as

i

Gle| 1) = 3 3 (L)L) Sonigmei(e] 1),  (37)

where (L*) and (L,")* are the vector operators in (36); Sy,
are the constants in (36) involving N,.’s, K’s, k’s, and a.
Znn' 18 @ scalar Green’s function such that

Gmn® = ¢mn(r)¢mn*(r0);

if  runs on the term involving the operators (L9)=(—a3XV.)
and (Lo)*=(—a3;XV,). And

gmni = an(r)xmn(tO);

if 7 runs on the term involving the operators (Lf)
=agV.? (Le)*=asViel, or (L)=V.(as; Vi—jwQ) and (L)
=V.as- Vio-jw ).

It is obvious that this scalar Green’s function satisfies the
scalar Green’s equation

1 2w »2Q? )
V24— V)2 — az-V| — + k20 ) gma?

[24 o [22

=8(r — ro). (38)

The symbolical form of G(r] 1) as given in (37) would be of
convenience for the discussion of retrieving the infinite
domain Green’s function to be presented after the next
section.
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EXCITATION IN A CIRCULAR CYLINDRICAL WAVEGUIDE

As an example, the case of a circular cylindrical waveguide
with perfectly conducting wall and filled with a moving di-
electric medium (u, €) having a velocity V along the longi-
tudinal axis of the guide is examined here. The guide is
assumed to have a radius a and is oriented with its longi-
tudinal axis along z axis so that V="Va,. The wave is as-
sumed to be excited by an infinitesimally thin current loop
Iei»t located at the radius r=a/2 and the plane z=0, as
shown in Fig. 1.

The source current density is expressed as

= ID—B(T—————_ a/2)3(2) etay, (39)

8

2mr

One may start with (7) for the electric field intensity E; using
the source function for E as given by (23b)

To(r — a/2)5(2)>

2xr (40)

Js = — jwuaao<

The appropriate free-wave solutions of ¢ and x that satisfy
(18), (19), and (20), and also satisfy boundary conditions at
the wall can be written immediately

Omn = J o(Kmatr)eindetbmndzgiot, (41a)

Xog = J o(K pXr)eiBeity zgivt (41b)

where m, n, p, and q are all integers. (K...%a) is the mth zero
of the first derivative of the nth order Bessel function
(/0. (K%r), (Kp*a) is the pth zero of the gth order Bessel
function J(Kper)-km.® and k,gx are the propagations con-
stants for the ¢n, wave mode and x,.. wave mode, respec-
tively. They are evaluated from the dispertion relations (21);
each yields four roots

kmn¢ = + [wﬂ + '\/m&]) (423’)

]{;mnx = i [wﬂ i \/koz2 - Kmn;z;]- (42b)

The signs outside the square bracket are chosen such that
they represent wave traveling away from z=0 plane.

Equation (42) is essentially that obtained by Du and
Compton,® except that Du and Compton only consider the
two roots with minus sign outside the bracket. It is of inter-
est to note that (41a) yields solutions corresponding to the
TE mode waves in Collier and Tai’s analysis” while (41b)
corresponds to their TM mode waves. The complete free-
wave solution for E is therefore

E = ) Aun{ Vi(Ja(Kmatr)ei™) X ag}eini®s

+ E quz XL X [Jpq(quxr)eiq0eik”“xz]a3; (43)
p.q

¢J. L. Du and R. T. Compton, Jr., *“Cutoff phenomena for guided
waves in moving media,” IEEE Trans. Microwave Theory and Tech-
niques, vol. MTT-14, pp. 358-363, August 1966.

7 J. R. Coliier and C. T. Tai, ““‘Guided waves in moving media,”
IEEE Trans. Microwave Theory and Technigues, vol. MTT-13, pp.
441-445, July 1965.
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CURRENT

Fig. 1. Cylindrical waveguide with loop current source.

where A, and B,, are arbitrary constants. The magnetic
field strength can be obtained from E through the modified
Maxwell’s equation

L X E = — jouH. (44)

The Green’s function for E in this waveguide is constructed
from ¢, and x,, according to (36)

4o

Gl = 2 e it

(Vi.(i)mn(l') X aS)(VL0¢mn(r) X a3)

m,n

4ra?

2
R - X (1) 2085

4o

+ 2

m,n Kmnz(km + wﬂ)zzmnNmnx
Vi(Vi- asxmn(r) — JeQxmn) Vi,

(Vi @sxma™ (1) + joxmn™(ro)). (45)
The field excited by the current loop is found by substituting
(45) and (40) into (24) and perform the integral. The integra-
tion is not difficult, if one observes that the source function
is a transverse function, only the transverse term of the
Green’s function is needed. Furthermore, J(r) does not
depend on 6 by reason of orthogonality of the eigenfunc-
tions, there shall be no contribution from #<1 terms in the
Green’s function, one obtains:

joualy

K
E(r) = as Aody <—E> Jo (Koir)etar, (46a)
8x? 2
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where (Kna) is the first zero of Jy, the prime on the Bessel
functions denotes the first derivative of the Bessel function
with respect to (Ko#). Using (45)

—aoly , Ko\ -- ; .
H = A01J() — L X (Jo (Kmr)e”“m’)ag, (46b)
872 2
where
4o (178)
= ————— a
" KwZaNo?

(47b)

In view of (45), it is seen that the current loop excites a TE,,
mode wave in the circular cylindrical waveguide.

THE INFINITE DoMAIN GREEN’S DYADIC

It is interesting to note that the transition of a finite or
semi-infinite domain Green’s dyadic may be obtained
through a limiting process. No attempt will be made here to
derive the infinite domain Green’s dyadic into its final form.
The main purpose here is to show that such transition is
possible.

As an example, take the Green’s dyadic of the circular
cylindrical waveguide given in (45). As the wall recedes to
infinity, i.e., a—, the summation on m goes over to an
integral. Written in the symbolic form of (38), the trans-
formed infinite domain Green’s dyadic, Gw(l‘l 19), 18

Gulr| r)) = 20 30 (LY(LH) f wSi(k)gnidk. (48)

In (48), the order of integration and differentiation opera-
tions has been interchanged and the subscript m has been
dropped. Evidently, the Green’s dyadic for infinite domain
can be obtained through a set of auxiliary scalar functions,
I, as represented by the integral in (48). In view of the fact
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distance from the source will be attempted through the
method of steepest descent.

Assuming that interest is in the accuracy of the solution
only to the order of r.’, the zero order Hankel function may
be expanded into its asymptotic form. Retaining only the
first term, (49) then becomes

iRl e Qig—ikepikris
r-—f .
2 e (mKry)2

(50)

At this point, it would seem more convenient to change the
coordinate system from that of circular cylindrical coordi-
nates to that of spherical coordinates (R, ¢, a); where

r.” = R sin ¢,
2/ = R cos ¢.
Under the new coordinate system, (50) becomes

g—ix/4) o0 Si
R = [
2 —w (KR sin ¢)1/2

.e——jR (K sin ¢+k cos d))dk‘

(51)

It is recalled that K and k are related through the dispersion

relations (21). Define a new parameter
T? = K*+ k2 (52)

T is therefore the total propagation factor. Now for the sake
of convenience, instead of k, a new integration parameter,
7, may be employed, such as

K = Tsin 7,

k=Tcosr.

(53a)
(53b)

The parameter 7 has the same significance as the angle which
measures the wave normal if 7 is a constant; however, in
the present case, T'is not a constant. In fact, combining (21),
(52), and (53) yields an expression for T in terms of r.

[04

w2 .
+—cos 7 + k*(cos? 7 + asin?7) —

w¥Q?
sin? 7

@ (54)

Titos =

sin? 7 4+ 1/a cos? 7

that g.¢ involves e/ and the Bessel functions, after using
the addition theorem to perform the summation on #, I may
be written

1 [+

i = ~ SiH D (Kr." e *dk, (49)
where
TJ_'=]1‘.L‘"1‘J.0!, Z’=lz—201,

and Hy®(Kr.') is the Hankel function of the second kind of
the zero order. It should be noted that the new coordinate
system has its origin at the source point. This choice of a
new origin may require subsequent transformation back to
the original origin.

An asymptotic solution which is valid for waves at large

where the subscript 1 to 4 on T represents the choice of plus
or minus sign in (54). For simplicity, the subscripts on T are
dropped. The integral for I* becomes

i = ! f o e Ru®dr  (55)
(4R sin ¢)1/2 J ¢ [« T(7) sin 7]1/2 ’
where
u(r) = jT(7) cos (T — ¢). (56)

Examination of the exponent shows that the real part of u(r)
approaches 4« as k approaches + «. The saddle point of
the integration is determined by

du
— 0’

o (67)
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which yields

(58)

T(lno ¢ T(T))Ho = tan (ro = 4).

The contour of integration, C, is then chosen such that the
path goes through the saddle point, 7o, and that the imagi-
nary part of u is constant. Following the method of steepest
descent, the solution for (55) is therefore

. Si(ro)
B 2n(rq) R(sin ¢)1/2

e—Ru(re)

(59)

where

n{ry) = {QT sin 7[(2—77 — T) cos (7 — ¢)

T

dr 17
—2——sin(r — ¢):|} . (60)
dr -
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The electric field intensity E in infinite domain may, there-
fore, be obtained from

-3 D[(wamf)

g IRu(70)

Si(To)
2n(ry) R(sin ¢)1/2

] -Idv,  (61)

providing that all parameters, including the differential
operators, are properly transformed to the correct observer
and source coordinates in the spherical coordinate system.
The Green’s dyadic as shown in (61) is in a form different
from those obtained either by Lee and Papas or by Compton
and Tai. Nevertheless, the results should be equivalent.
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Coupler-Type Bend for Pillbox Antennas

VINCENT MAZZOLA, MEMBER, IEEE, AND JOEL E. BECKER, SENIOR MEMBER, IEEE

Abstract=—A new type of 180° H-plane bend has been developed for
use in double-layer pillbox antennas. This bend, called a coupler-type
bend, permits complete coupling between two pillbox layers with a mini-
mum of reflection, cross-polarization, and defocusing. It can be used with
short focus antennas where large feed angles are involved. The coupler-
type bend utilizes a metal plate between the pillbox layers; the plate
contains a pattern of holes which achieves the desired coupling.

Analytical and experimental programs have been implemented to
determine the optimum hole size and distribution. Simulation techniques
in rectangular waveguide were employed for convenience in measurements.
The bend design was measured to have a reflection less than 2 dB SWR
over a ten percent frequency band; this is computed to contribute less
than 0.2 dB SWR to the reflection seen by the feed-horn of a double-layer
pillbox. The bend introduces less than —22 dB of cross-polarization in
the antenna radiation. Measurements of a pillbox model incorporating
the bend design have verified the predicted performance of the coupler-
type bend.

I. INTRODUCTION

NE OF THE common antennas for generating a fan
@ beam is the pillbox or “cheese” antenna [1], [2].
For the single-layer pillbox antenna, the feed is
usually located in the radiating aperture, producing several
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undesirable effects. First, a portion of the wave in the aper-
ture is received by the feed and appears as a reflection. Sec-
ond, this blocking causes a hole in the aperture excitation
giving rise to degradation of the pattern in the form of
higher sidelobes.

In order to eliminate these effects, double-layer pillboxes
have been developed [2]. In the double-layer arrangement,
the feed is located in one layer with the second layer contain-
ing the aperture. In such designs, the principal problem is to
transfer the wave efficiently from one layer to the other. In
the past, this has been accomplished with a bend consisting
of a large slot in the common wall between the layers, bor-
dering along the entire length of the parabolic reflector. In
general, this configuration has been successful only over a
narrow bend of frequencies and for long focal-length pill-
boxes, in which the bend is required to operate only over a
narrow range of angles. In addition, there is frequently the
problem of appreciable antenna response to cross-polariza-
tion. All of these defects can be traced to the performance of
the coupling device.

A new double-layer pillbox has been developed at Wheeler
Laboratories which operates over a substantially larger band
of frequencies and with a larger feed angle (shorter focal
length) than possible in the past. Also, cross-polarization is
suppressed to a tolerable level. This performance has been
achieved by an improved coupling device between the
layers; the device is referred to as a coupler-type bend [3].



